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I. INTRODUCTION

One of the most fundamental and practical problems in the
quantum mechanics of atoms, molecules and crystals is to solve

secular equations of the form
H-ES8)c =0 (1)
[ 4 -~ 0~ .

where E and E are the matrix representatives of the Hamiltonian
{*— and unity in some basis set 2‘, and < is a column vector

of coefficients. It is well known that if the system of interest
possesses symmetry, a knowledge of the irreducible representations
of the symmetry group can be used to factorise equation (1) into

a set of secular equations of lower order.

Professor Slater has been closely associated with this
problem, particularly in the field of atoms. One of his major
contributions was the theory of the central-field approximation
for atoms (Slater, 1929), which leads to secular equations of
type (1). Tﬁe striking feature of his method was that he showed
how to factorise and solve the secular equations without the
use of group theory.  Slater's method works well in the cases in
which the irreducible representations occur no more than once in
the basis and the degeneracies are low. However, when this is no

longer true, he acknowledges the value of group theory techuniques

(Slater, 1960).



The group theory methods described in the literature have,
however, an unnecessary weakness. In the general case in which
degenerate irreducible representations occur more than once, they
require actual matrix realizations of the representations. Yet
the factorised secular equations are independent of any parﬁicular
matrices, and depend only on the invariant characteristics, all
of which are contained in the character table of the group.

‘The object of this paper is to derive the explicitly invariant
forms of the factor equations. It gives me great pleas&fe to
- dedicate it to Professor Slater, who has contributed so much fg

the problem of factorising secular equations.

II. DESCRIPTION OF PROBLEM

Let the basis consist of n linearly independent functions

¢

.o ¢n . The matrices H and § OCCurringAin Eq. (1)
. ~ -~

g

1’ "2

are defined by

t t *
H= ¢ #¢> aund S=<¢ ¢> (2)
where the row vector ‘g = (¢l s ¢2 s eee ¢n). Let G bg the
symmetry group of order g , and with h classes, associated

~ with the system of interest. By definition the Hamiltonian

commutes with all the symmetry operators R belonging to the

group,




R#h = #R . (3)

It will be assumed that the space of the functions @ 1is closed
under the operations of the group, so that @ forms the basis
for a matrix representation " , in general reducible, of q

The matrices [?(R) are defined in the usual way by
~

Qg = $ TR, (%)

The compietely reduced form of r may be written formally as

s ()
oL ,
= Z W, " , | (5)
=1 '
P(O()
where is the (K th irreducible representation of
of dimension »Qo( .
The essential step in solving Eq. (1) is to find the n roots

(eigenvalues) of the determinantal equation

M(,\‘i*Ei):O» | (6)

Equation (1) may then be solwved for the corresponding eigenvectors ¢ .
)

The structure of I implies that there are wmy distinct eigenvalues

)

E. i=1,2,..., my ), each lo(-fold degenerate, belonging to the



. (=)
representation r ; the total number of eigenvalues is

N

hn= 2 m L . (7

x =1

It follows that a transformation matrix U exists, depending only
~y

on the properties of G , which will reduce the determinant of (6)

1 -
to a block diagonal form which can be factorised in the following

manner !

. X 9
T f ,_ o
Jr(QHQ —BVS YY) =T {dred 5,3} , ©

x =2

whgre the matrices Eﬁ and ?5 are of order m, X mgy . The

roots of Eq. (6) are unaltered by the transformation, and the m
eigenvalues Efo are therefore given by the factor determinantal

equation

dx (H -ES ) =0 ©)

The aim of the present paper is to construct irreducible

) of the

factor equations (9) involving only the characters x
(ot

irreducible representations " ) of (; . It is not feasible in

general to determine a transformation matrix ’g which will do the

job directly. The first step is to use the well known procedure

of projecting symmetry adapted functions § ) out of the basis ¢ .




The number of sets of such functions required is equal to the
number of generators, p , in the basis. From the new (redundant)
. . ) o v

basis § , matrices H and ’SV of;order plo( x pl, and
rank my are constructed; these involve the irreducible matrices
I-'w . The final step is to sum over the appropriate principal
~v

. (CY L) . . . .
minors of order m of H - ES s, which yields the explicitly

v

invariant form of Eq. (9).

III. FACTORISATION WITH SIMPLE BASIS

Consider first the simplest case in which the space of tix.e
~basis @ can be generated by the action of the g symmetry loperators
€. of the group on one member, say ¢, . This is only possible if

n g g, , or more precisely my < l“ . A new basis, |

iﬁ‘“ s 2“” s see ,vé(b of g symmetry functions mé)’ then be

defined by2

e LK

W) -\ @)

. 10

&% = 57t Re,, (10)
R 3

where the sum is over all ements R of ¢ . The significance

of the $ 's follows from the orthogonality theorem for irreducible

. representations (Wigner, 1959), which leads to the result

oL - ()
<§f{,$§}f> = 'sdfso. (;,ul,,g'Z_Pmuz)“b,z ,  an
R




where $ is any operator which commutes with the operators of Q ’

and

De = <6,IRE>. | (12)

let the members aéﬁz of the new basis be ordered lexicographically,
first by the representation superscript & , then by the row

suffix i , and finally by the coluﬁn suffix k . Then it follows
from Eq. (11) that the new g x g matrix representafive of

$ = - E, which commutes with G , will have a block form of

@) o)
the kind illustrated in Figure 1. The 9, blocks D = Ht - E'“,

o ~ ~
£ 2 x2 i re identical
of order (X Ry s belonging to representation , are identical,
since the expression on the right hand side of Eq. (11) is
. o
independent of i for i = j . The block sub-matrix Rf’ may
‘be conveniently defined by summing Eq. (11) ‘over i' and j to

[

give3

. ) -
'Dw = <§u),(#—-5)§w> = g 'Z C (R)D (13
~ ~~ ~ R

where

(14)




. @) . ,
The matrix D~ of order Ax x §, is of rank m, . This
2 (€]
follows from the fact that the .QO( functions é span a sub-
~
(o

space of dimension MRQ« , belonging to C ) , of the n-dimensional
space of the basis @ . Since functions belonging to different rows

ébhﬂ .
of are orthogonal, only m o functions in any row are

. ™ .
linearly independent. Nevertheless, the m, roots Ei )could

be obtained from the determinantal equation
W)y — ) ™y =
M(Q’):M(*fj ~ES ) =0, (15)

This has two disadvantages, however. In the first place, if

meg < g& Eq. (15) will have 2« -m irrelevant zero roots.

K
0 . . .
Secondly, to construct D it is necessary to have particular

oL)
realizations of the I:((R). These disadvantages are removed

in the next section.

IV. INVARIANT FACTOR EQUATIONS

Possible forms for the irreducible factor equations (9) are

. . o
obtained by equating to zero any non-vanishing minor of 2} ) of
order m, . However, such forms contain the elements of the

‘ ) . . .
irreducible matrices E: (R) explicitly. A form involving only

the group characters can be obtained by equating to zero the sum



@)

of all the principal minors of D &

of order My - Since ER‘.

is hermitian, at least one of the principal minors must be non-

vanishing (m, # 0). Furthermore,‘the non-vanishing minors must

be proportional to each other, since they all yield the same roots.
For convenience in deriving the explicitly invariant form,

the representation number ® will be dropped everywhere temporarily,

The matrix Efk\ given by Eq. (13) will therefore be written,

ignoring the factor g 1 s

1

D 2 CRID, . (16)
~ R

" A typical principal minor of D of order m is
(a4

M.k = [ZR"DR 2R Z'D e, « .. l%bqu(g)
A
R

ar)

'Z yﬂ (K) o b4 A4 [ - . - ZR DR r.k.k(g)

By the rule for addition of determinants this may be written

:J- e Z Z ZT’,JQ'“ GR), R, . . .Tle)
fe), @y, . .. - - -

“~

(\2)

f‘k;(k),. « ¢ o 8 - r‘;k(k)




The sum of the principal minors is

57..3 "y ﬁZZ #2300 D X (8,K)

| |

i i 2k=1

where

X (£,a,-,K) = >ZZ E

-(Jzi k=21

The importance of the coefficients

[L(R), I 5
G,,(Q)

- - L4

ri

'il

(K7,

4

(R), --- Ei(ﬁ)
(Q) e
NN

X defined above lies in

the fact that they can be expressed directly in terms of the

characters '%(R), X(RQ), etc., of the ® th irreducible

representation.

That this is possible can be seen immediately

by comparing a typical term from the determinant of (20) with

the formulae for the characters:

K@ = Z 0
¥ (RQ) Z

X (RQK)

(R) f“

(a),

(19)

(20)

7_22 ) (@) Gt ake.



Every system in the compound character Xm , as it may be called,

corresponds to a permutation belonging to the symmetric group of

degree m . Therefore

-1
chel) 22_)..) Qm) - (M‘v) Z ‘_\: T-P(e()gl)~ *) eh) (21)
L 1%

where the summation is over all m! permutations, and the + or -

sign is taken according to whether P is even or odd. The
’corfespondence between the permutations P and the individual terms
of equation (21) is illustrated by the following example: if m =5

and P=(1)(3)(254), then

Tp(e.,..,es) = o (R) YR { (RRsR,) ;

the form of 'TP in the general case is clear from this example.

The first three compound characters are

X(R) = %(R),
X(R,R) = £ [ Kryy(a) ~ ARR] |

10

X (R,Q)K) = ¢ [ K@y k) - Y@)xaK) — X@)x(kr) —¥)%(eq)

£ X (RaK) + A(QRK) ] .
The Xm are not defined for m > & s, the dimension of the

representation. Some elementary properties are as follows.

(22)

N\



(a) Xm(R,Q,..., K) is symmetric in R, Q, ... , K .

0, except for the unit representation.

(b) 2 X (R,Q-.., K)
R

det r'(R)TS =+ 1, since (7's unitary.
- ~

(c)' Xﬁ (B,R,..., R)

The eXpliditly invariant form of the i?reducible factor equations
can be‘obtained'by equating (19) to zero. By substituting for DR
from Eq. (14),‘in£roducing RisRys+++, R~ as the element summation |
‘symbols and restoring the representation number & , Eq. (19) can
be written in the polynomial form;

Wy o e ‘
7 (,.)(-E) )22 He, Ho o Mo Se . Se X e, R0
Y=o S Re €, R.. K

Rf‘#l

= 0. (23)
" w)
For the cases m, =1, 2 and 3, Eq. (23) for the Ei has the form
2 (-3 )%™ R) = 0,
Z&g (Fe o~ 26 HeS +E*S¢ S, ) X“Ye,q) = 0,

% 2(;_ %‘( (HRH&.;BEMQSK F3E M So S, ~E'SeSeS, ) X (R,q,6) = O,
o (24)

where X@')(R,Q) - and ‘XW(R,Q,K) are given by Eq. (22).

11



V. GENERAL BASIS

Consider now the general case in which the basis @ possesses
P generators, say ¢1 s ¢2, ceey ¢p . That is, the gp functions
R, , R¢2, ..+, R§ where R ranges over the group G , span the
n~-dimensional épace of the basis. The functions produced from the
generators may be linearly dependent (n < gp). Let the sub-basis
PP, consisting of the g functions R¢/‘A R<Q), be of rank I“M R

so that

n = 2 Fm
fﬁ.:. t
The P¢ form the basis for a representation F‘—' of the group of

order FM , in general reducible. Let

£
PP ZFe 09 @5)
o=t

Then it follows from Eq. (5 ) that

2 .
P
M -
My = 2 ,A“"o( , o m 'O‘Z‘/‘“‘xﬂex G
pm s T

To factorise the secular equation (1) in the general case it

is necessary to introduce a set of g symmetry functions F& =

r?i(,t)) ,&éu)) o )F@(&’ for each sub-basis ! @ ,

12



P &4
13

defined by

@ h - W)
I‘*éi = g'ZC(R)@%&. (27)

) '
Let the new basis of gp functions QE ck be ordered lexicographically
by & ,,L, i, k.

The matrix representative of the operator

35 = - E will consist of ﬂ‘ diagonal blocks ;fu) for each

, o -
representation r1( { as in the simple case of section IIIL.

However,
W . .
the 2' are now of order plK X plx , a nd consists of sub-matrices
V() ”
M D",

23 - l:/u.));\)fd)] . v(28)

The sub-matrices may be defined, by analogy with Eq. (13), by

Y &) M ) ()
PR L <PE, ',
- )
= 4" 2L "D, (29)
T~ R

where

,I\
r — E Sa . (30)_



By introducing new p x p matrices DR , whose elements are the
o~ : .

y o
F DR , the matrix D( ) may be defined succinctly by

~N~

e %

(L)
D = 4Z t®wx D, , (31)
R 7 o

where X indicates a direct product.
The required form of the irreducible factor equations is obtained
, ' . (@)
by taking the sum of certain of the principal minors of 2’ of. order

ﬂl« These minors must contain ,ﬂh“ rows and columns from the
W) » o

sub-matrix /“/“E of rank /Amd , as any non-vanishing minor of D”
. ~s

of order m, must consist of linearly independent rows and columns.

let Mij conk ('m, 2m, cees Pn) be a principal minor of Rfd)of
|
order m= m+ 2m 4+ ... +Pm which satisfies the above condition.

By the rule for the addition of determinants, it can be written

— e S e R G em Gme G e S i e o wwn wmm em lom an tm e e me e e wm

14

(32)




15

where the representation superscript & has been dropped from i .
The determinant in Eq. (32) differs from that in the corresponding
Eq. (18) of the previous section, in that it is not possible to

. rv ) . . . , .
factor the kas out of it. An explicitly invariant form of the
. irreducible factor equation is still obtained by taking the sum

over all such minors, but in this general case must be left in

the form4
B O] L
22 ... 2 Mok (s P> =00 (33
C:lJ:‘ k=i

It can be seen, however, that the coefficient of any product of
| M ! . : . . .
the Ik's will be directly expressible in terms of the simple
ol ol
characters X[ ) ; the compound characters X'(h) do not appear
in general. The invariant form of the factor equations can be
illustrated best by means of simple examples in which the basis @

possesses p = 2 generators, @. and ¢2 .

1

(a) Consider the case In = zm = 1 . The general principal

VRS 3
. ) ) .
minor of D of order 2 is
~

| [
MQ‘“)” = 22 "D&Y}‘.(e); ’lDRP‘J‘“)
R |_ _ _ __ _ — — =

t |
Dq G'L'LQ) : z DQ rJ,J—(Q)

|
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taking the sum of the principal minors, Eq. (33) is

M 2 12, 24 _ 4
iﬁ%[ D DHRN@) = DMy Akp] = 0. Y

(b) Consider the case ‘m =1, “m =2 . The principal minor

is

Y .
Mue(b2) =222 | Defutey) 2D Me) *D ry o)
J RQ W | _______ |_____J-_._-§._--

Expanding the determinant and taking the sum over all i, j, k

this becomes

%EZ 7'115‘({":9&21)6} ['X(Q)Klk) -X(Q K)]K(g) +

+ 'llzl)ﬁz':DQ[?((RQK) ~7{(RQ)7[CK)]} = 0. (35)

These equations may be put in the form of polynomials in E by

Y
substituting for IW:DK from Eq. (30).




V1. EPILOGUE

It wofild seem incredible if the mathematical problem solved
in this paper had not been tackled and solved at least fifty
years ago by the mathematicians of group representation theory.

However, a reasonably diligent search of the literature, and much

questioning of mdathematicians, has not yet brought such a discussion

to light. Rather than engage in further historical research, it
seemed more sensible to publish the author's treatment of the

problem within the context of quantum mechanics.
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FOOTNOTES

Note that }L is not the same as the matrix which reduces

the matrices of [ simultaneously to the block form (5).

The usual definition involves the complex imaginary of the-’

matrix element Ij , which is a nuisance in the present work.

The notation in Eq. (13) requires fhat the adjoint be taken
of a matrix in the left half of a bracket expression. This
&)

~

definition of is %, times that occurring in Figure 1,
&
Eq. (33) is actually (1m! 2m3 ...Pn!') times the sum of the

] . (o)
appropriate principal minors of 2’ .

19
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Figure 1.

LEGEND FOR FIGURE 1

Block form of b= E’ - E’Sv in the symmetry basis §

for a group of order 15 with &4 irreducible

representations with dimensions 1,1,2 and 3. Non-zero

matrix elements are shaded.
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